

Leak Detection Technologies for A2L Refrigerants in HVACR Equipment

Summary of AHRTI Final Report Findings

Introduction

Emerging global standards are requiring the implementation of low-global-warming (LGW) refrigerants, many of which are flammable.¹ As such, new standards will also require the use of sensors for detecting refrigerant leaks in order to prevent flammable conditions or explosions.

In 2017 the Air-Conditioning, Heating and Refrigeration Technology Institute, Inc. (AHRTI) published a report entitled *Leak Detection of A2L Refrigerants in HVACR Equipment* (Report No. 9009). It assessed what were, at the time, technologies potentially capable of detection of LGW refrigerants for this application:

- 1. Infrared (IR), including Non-dispersive infrared (NDIR) and photo-acoustic infrared (PIR)
- 2. Electrochemical Cell (EC)
- 3. Metal Oxide Semiconductor (MOS)
- 4. Catalytic (Pellistor)
- 5. Heated diode sensors

Molecular Property Spectrometer (MPS)-based sensor technology—released in 2019—was not available at the time, and was not included in the study.

The AHRTI study sought to make an assessment about the overall suitability of available sensor technologies for detection of LGW refrigerants, and made comparisons amongst the alternatives using common criteria. Of course, the study could make no conclusion regarding a given technology's performance versus performance standards that are, as of July 2019, still being defined (e.g. ASHRAE 15 Addendum d, ASHRAE 15.2p, and UL 60335-2-40). The study called attention to this fact, stating that, "it is expected that manufacturers will focus research and development efforts to ensure that appropriate sensors are available to meet the updated standards, although the timeline for development is still uncertain."

Summary of the AHRTI Study Findings

The study concluded that two of the sensor types under consideration—Electrochemical Cell (EC) and Catalytic (Pellistor)—are not suited for this application:

- Regarding EC sensors, the study concluded: "Ultimately, given that this technology cannot currently detect fluorinated compounds (nor is it practical to adapt EC cell sensors to detect fluorinated refrigerants), the short sensor lifetimes, and the intensive recalibration requirements, this technology is not likely to be appropriate for use in HVACR systems containing A2L refrigerants."
- Regarding Catalytic sensors, the study concluded: "Ultimately, given that this technology is susceptible to poisoning from the combustion products of fluorinated compounds, the short sensor lifetimes, and the frequent recalibration requirements, this technology is not considered to be appropriate for use in HVACR systems containing A2L refrigerants."

The study's findings of the remaining viable sensor technology options—IR, MOS and heated diode are compiled in Table 1, alongside the MPS-based sensor technology characteristics for comparison. Regarding IR and MOS, the study concluded: "Sensor models using IR and MOS technology currently exist that detect A2L refrigerants; however, most sensors that are currently available or are coming available this year [2017] cannot measure A2L refrigerants up to the specified detection ranges and have additional concerns for adaptation, particularly in residential settings, including relatively short lifetimes, maintenance requirements, and costs."

SM-AN-0012-02

¹ As stated in the report: "Several of these proposed refrigerants fall into the ASHRAE safety category created in ASHRAE Standard 34-2010: Designation and Safety Classification of Refrigerants, A2L, which are a sub-class of A2 (i.e., lower flammability) refrigerants."

Leak Detection Technologies for A2L Refrigerants in HVACR Equipment

Summary of AHRTI Final Report Findings

	NDIR	MOS	Heated Diode	MPS
Features				
Size	1 to 20 lbs	1x1x1 in	n/a (handheld system)	20 x 16 mm
Power Requirements	13-30 VDC, 4-5 Watts	12-24 VDC, 1-5 W	Battery-operated (alkaline, Li,	9.0 mA @ 3.3 VDC
			NiMH, AC Adapter)	
Refrigerants Detected	All types (HFC, HFO, HC, CFC,	CFC, HFC, HCFC, HFO	HFC, HFO, and blends	HFC's, HFO's, Alkanes (R290)
	HCFC			and blends
Calibration	PIR: Required every 6 months	Recommended every 6 months	Automatic or manual zeroing	5+ years
	(and when a change in gas			
	measurement is required).			
	NDIR: Calibration is not			
	required. Re-zeroing is required			
	every 0.5°C temperature change			
	Dreduces either a 4 20 mA ar	connection to plarm system		Configurable digital response
Detection system response	HART signal: connects to alarm	connection to alarm system	Alarm (audio/visual)	or applog output
	system			
	System			
Limitations				
Measurement Range	0-10,000 ppm	20-10,000 ppm	6.6 oz/yr to <0.1 oz/yr, High/low	0-100 %LEL reporting
Posnonso Timo	Single zono: E 20 seconds	15 00 seconds to TOO	Sensitivity range	<20 seconds T00
Response fille	Multi-zone: 5-200 seconds	13-90 seconds to 190	up time ~9 second recovery	
	Walti-zone. 5-500 seconds		time)	
Operating Temperature	-40 to 75°C	-34 to 70°C	-20 to 50 °C	-40 to 75 C compensated
Humidity Range	0-100 (some sensors require non-	0-95 %	Unknown, but can be affected	0 to 99 %, compensated
	condensing environment)		by moisture	
Vibration	depends on application (sensor	Depends on application.	n/a	Tested against high-vibration
	can be placed inside a strong	Operating principles of the		conditions (IEC 60068-2-6); no
	structure that protects it from	technology shouldn't be		effect on performance.
	harm)	affected by normal workplace		
		vibrations		
False triggering chemicals	none	Gasoline, diesel, and propane	moisture, oils, other flourinated	Will also alarm to unsafe levels
		exhaust; Fumes from solvents,	refrigerants (sensor cannot	of some other flammable gases
		paints, and cleansers	selectively detect refrigerants)	should they occur.
Interforring chemicals	Acatulana: overexposure of	Ethanol silicones highly	moisture oils overexposure to	2020
	refrigerant gas	corrosive gases alkaline metals	refrigerant gas	none
	i en gerant gas	overexposure to refrigerant.	i en Beranc Bas	
		heavy condensation		
Reliability				
Lifetime	Handheld: 5 years; Stationary:	3-5 years; Sensor lifetime	2-3 years, up to 5 years	5+ years
	10-15 years; sampling pumps	decreases with continued		
	have limited electrical motor life	exposure to poisioning/false-		
	expectancy	triggering gases		
Repairable	replace air filters every year to	Sensing element can be replaced	sensing element and filters can	Plug-and-play replacement
	prevent particles from entering	if damaged by poisoning or once	be replaced	
	the cell and contaminating	lifetime is exceeded		
Self testing abilities and /or	certain devices incornorate	none observed	N/A	Yes sensor performs huilt-in
indication of malfunction	active diagnostics that			self testing diagnostics.
	continuously monitor the system			
	for proper operation			

Table 1 – Compilation of AHRTI performance findings. Information in the NDIR, MOS and Heated Diodecolumns are quoted directly from AHRTI report. Information in the MPS column is provided for comparisonpurposes.

SM-AN-0012-02

Leak Detection Technologies for A2L Refrigerants in HVACR Equipment

Summary of AHRTI Final Report Findings

Background -- MPS[™] LGW Refrigerant Gas Sensors

The MPS[™] represents the first completely innovative technology for flammable gas detection (including flammable LGW refrigerants) in over 40 years, and was designed to overcome the shortcomings of existing technologies.

The MPS uses a micro-electromechanical system (MEMS) transducer, comprising an inert, micrometerscale membrane with an embedded heater and thermometer. This transducer measures changes in the thermal properties of the air and gases in its proximity. Multiple measurements, akin to a thermal "spectrum," as well as environmental data are processed to classify the type and concentration of flammable refrigerant present.

Additional information about this product can be found at: https://www.nevadanano.com/mps-lgw-refrigerant-gas-sensor/

SM-AN-0012-02