Flammable and Combustible Gases

In 2010, the Deepwater Horizon drilling rig in the Gulf of Mexico exploded. The incident killed 11, injured 17, and resulted in one of the biggest oil leaks in history. Prior to the explosion, combustible natural gas had accumulated to dangerous levels. However, the sensors that detect high levels of combustible gases were silent to avoid the regular hassle of false alarms.

Detecting flammable and combustible gases quickly and accurately is a matter of life and death. First responders and industries that process hydrogen, hydrocarbon-based fuels and chemicals, and explosive substances, value accurate detection of gases with technology from IOT infrastructure companies. The flammable and combustible gas detector can protect valuable infrastructure and the environment at large.


Gas Detecting Technologies

Currently, available sensing technologies from IOT infrastructure companies are competing in key aspects of performance, reliability, and cost-of-ownership. NevadaNano’s new MPS™ Flammable Gas Sensor, also known as the LEL Gas Sensor, is the first completely new technology for flammable gas detection in over 40 years. It was designed to address the key shortcomings of existing combustible, flammable, and explosive gas sensors.

The MPS™ Flammable Gas Sensor not only acts as a hydrogen gas sensor, but it can accurately measure the concentration of an unprecedented 12 different flammable and combustible gas mixtures. Further, it can classify detected gases into categories: hydrogen, hydrogen-containing mixtures, methane (or natural gas), and light, medium or heavy gases/mixtures. This addresses the need for a sensor platform flexible enough for complex industrial environments.


How The Flammable Gas Detector Works

The MPS™ has a robust Microelectromechanical-system (MEMS) platform that is inherently poison and drift-resistant, enabling calibration intervals that can be measured in years. Built-in environmental compensation enables reliable, accurate performance across a range of harsh conditions, from -40C to 75C and 5% to 95% relative humidity.

Levels of functionality and reliability set a new standard in flammable gas safety all because of the critical role of MPS Flammable/LEL Gas Sensor.